
STRIVE: A Co-Simulation-Based Testing Platform
Enhanced with Runtime Monitors

Praanav Paatil, Daryna Datsenko, Mário Cardoso, Ana Sousa and André Matos Pedro
VORTEX-CoLab, Vila Nova de Gaia, Portugal

Email: {pranav.patil, daryna.datsenko, mario.cardoso, ana-cristina.sousa, andre.pedro}@vortex-colab.com

Abstract—As safety standards for autonomous driving systems
continue to rise, the need for rigorous validation methods
has become increasingly urgent. This paper combines three
software engineering approaches for ensuring the safety and
reliability of autonomous driving systems. The first approach
evaluates system’s performance through scripted simulations in
a co-simulation platform, mimicking real-world conditions. The
second approach focuses on generating monitors to identify faults,
increasing confidence in the system’s correctness and safety.
The third approach includes continuous integration, enabling
automatic testing throughout the development process.

To achieve autonomous driving testing and monitoring, we
propose integrating the co-simulation and monitoring pipeline
into a testing framework. This framework allows us to continu-
ously test the system’s behavior in various scenarios, ensuring the
safety and reliability of the autonomous driving system before
deployment. We demonstrate the effectiveness of our approach
through the STRIVE platform, which provides a solution for
testing and monitoring autonomous driving systems. Our results
show that this approach can help developers build safe and
reliable autonomous driving systems, addressing a critical need
in the industry from the first day of the system’s development.

I. INTRODUCTION

The unpredictable nature of Autonomous Driving Systems
(ADS) behavior needs rigorous validation methods to en-
sure the safety of Autonomous Vehicles (AVs). Traditional
real-world test drives are time and cost-intensive [7], thus
simulation-based solutions are being checked out. While simu-
lation testing provides a solution, capturing all possible aspects
of ADS in a single simulator is difficult.

Co-simulation, by addressing these limitations, presents a
promising option for extensive testing. It enables a more
comprehensive analysis of ADS behavior by merging multiple
simulators which allows to cover various aspects of ADS.
Furthermore, using a scenario-based testing approach within
co-simulation allows for the development of scenario scripts
that mimic real-world events.

In [9], Menzel et al. discussed the requirements for rep-
resenting scenarios in various process steps defined by ISO
26262, a functional safety (FuSa) standard. According to
FuSa, scenarios can be utilized to support the development
process, including deriving requirements, developing hardware
and software components, and proving the safety of these
components in the test process. To ensure a common under-
standing of terms like scenario and scene, clear definitions
of these terms are essential. In a recent survey [14], they

!

!

Pedestrian
Detected

Crash
Detected

Fig. 1: The running example of co-simulation-based testing of
an ego vehicle’s behavior in an urban intersection scenario.

presented their perspectives on this terminology, which we
adopted throughout this paper. Moreover, the adoption of AI in
safety-critical systems, such as autonomous driving, presents
several challenges for FuSa and ISO 21448 – known as safety
of the intended functionality (SOTIF). One of the significant
concerns is ensuring the safety of pedestrians and passengers.
ADS need to be able to make safe decisions in complex
and unpredictable environments, such as when unexpected
obstacles or weather conditions occur.

With co-simulation and scenario-based techniques, it is still
difficult to detect potential runtime errors. To address this
issue, we propose the use of dynamic verification, specifically
Runtime Verification (RV). RV tools constructs software moni-
tors based on system requirements, which integrate neatly into
the co-simulation environment. These monitors continuously
monitor the ADS without interfering with its functioning,
allowing for real-time fault identification and analysis and en-
suring compliance with established guidelines and standards.

Furthermore, by encompassing scenario-based testing
within co-simulation along with monitoring pipeline, our
framework facilitates Continuous Integration (CI). CI allows
for automatic, and systematic testing, providing an effec-
tive option for incremental AV validation and requirements
traceability. Incorporating multiple simulators, RV tools, and
scenario-based testing, our co-simulation platform, known as
STRIVE, serves as a virtual environment to test and validate
ADS functionalities, aiming to enhance reliability and auto-
mate safety certification processes through integration with CI.

https://orcid.org/0000-0001-9452-0995

A. Running Example

Our platform validates two critical aspects such as com-
munications and Ego rules in an urban intersection scenario
(see Fig. 1) involving connected vehicles (orange and green),
a vulnerable road user, and an approaching ego vehicle (red).
To validate V2X Communication amongst vehicles and ensure
compliance with ETSI standards, we couple the runtime mon-
itors generated by the RV tool to monitor message exchanges.
To validate that the Ego Vehicle Behavior adhere to traffic
rules, as per the Vienna convention [10], we couple the runtime
monitors within our platform which are generated by another
RV tool to validate the safe behaviour of the ego vehicle.

We show how to monitor these aspects effectively. To
monitor V2X communication, the platform incorporates the
HAROS plugin [5], which generates runtime monitors. Addi-
tionally, to observe traffic rules, the platform integrates the RV
tool described in [6]. Furthermore, we evaluate the resource
consumption in both offline and online deployments, as well
as the cost-effectiveness of operating these deployments on
cloud infrastructure.

B. Contributions of the paper

This paper presents three contributions: i) an approach that
integrates co-simulation-based testing, runtime monitoring,
and CI; ii) a novel micro-service-based reference architecture
that enables the monitoring of co-simulation-based testing; and
iii) a dynamic verification model that illustrates the monitoring
of autonomous vehicle behavior in an urban intersection.

C. Structure of the paper

The paper is structured into following sections: Section II
overviews the related work in the field. Section III introduces
the necessary definitions. The proposed approach is presented
in Section IV, while the implementation details and reference
architecture are described in Section V. Section VI presents the
experimental results, and Section VII summarizes the findings
and discusses future work.

II. RELATED WORK

We observed various co-simulation frameworks, primarily
an OpenCDA [17], a co-simulation platform for developing
and testing Cooperative Driving Automation (CDA) systems
where different CDA algorithms can be tested. Secondarily, a
co-simulation platform [13], comprises two pieces of software
namely Siemens Simcenter Amesim and Simcenter Prescan
for testing Autonomous Driving Assistance Systems / Au-
tonomous Driving (ADAS/AD), and lastly, a customized co-
simulation environment [4], where readily available or custom
data sets have been used for the development of automotive
applications that can be utilized in ADAS. STRIVE integrates
a monitoring pipeline which helps to detect runtime errors and
enables continuous testing through CI, which are the notable
differences with those co-simulation frameworks.

Temperekidis et al. [15] presents a technical approach for
Runtime Verification (RV) of properties for the entire co-
simulated system. The approach integrates a monitor synthesis

tool at the master algorithm level of FMI-based co-simulation.
Our approach is designed to be flexible and scalable, and do
not impose constraints on the execution of the monitors. They
can be easily coupled with existing robotic operating sys-
tem (ROS) middleware using a publish/subscribe mechanism,
which can run on different containers or virtual machines.

Nickovic and Yamaguchi [11] also demonstrate how online
monitoring can be integrated with ROS and its usability in
robotics applications. PerceMon [2] is another online mon-
itoring tool that has been integrated with CARLA [8] and
ROS to monitor the properties of object detection and tracking
algorithms, while Zapridou et al. [18] uses the RTAMT library
to enable the validation of autonomous driving control by
online monitoring over realistic driving scenarios.

To the best of our knowledge, no previous work has specifi-
cally addressed the monitoring of the combined effects of V2X
communication and traffic laws and rules on an autonomous
vehicle’s behavior. Furthermore, none has proposed a reference
architecture that can readily integrate with a CI/CD pipeline.

III. PRELIMINARIES

A. Co-Simulation

Co-simulation, an integration of multiple simulators cover-
ing various aspects of cyber-physical systems (CPS) for val-
idation purposes. There is a master algorithm responsible for
coordinating the interaction among simulators and managing
the information exchange between them. It plays a crucial
role in orchestrating the syntactic and semantic interaction
among the simulators. To ensure the proper functioning of
co-simulation, synchronization techniques and communication
patterns should be taken care.

a) Synchronization Techniques: Co-simulation synchro-
nization techniques are used to ensure that the simulators run
in a coordinated manner and exchange data accurately [3]. The
master-slave technique is often used in co-simulation, where
one simulator acts as the master and others act as slaves. The
master simulator controls the simulation and exchanges data
with the slave simulators at regular intervals. This will be the
adopted synchronization technique.

b) Communication Patterns: Co-simulation communi-
cation patterns involve simulators exchanging data [3]. In
ROS subsystems, the publish/subscribe architecture enables
asynchronous, message-based communication via particular
topics. Furthermore, the service-oriented architecture (SOA)
design pattern allows for dynamic, standardized communi-
cation across services. This combination is appropriate for
large-scale, distributed systems with a variety of platforms and
architectures. This communication pattern combination will be
the choice for the remaining sections.

B. Runtime Monitoring

Runtime monitoring is a verification technique in which
monitors observe and compare a system’s behavior in runtime.
These lightweight and non-intrusive monitors compare runtime
behavior to expected behavior (to its formalized properties).

Listing 1: An example of two simple properties in HAROS
Property Language

1 globally: some /vehicle/orange/CA_service/transmitter/ITSG5
/CAM within 10 ms

2 globally: /vehicle/red/CA_service/receiver/CAM requires /
vehicle/orange/CA_service/transmitter/ITSG5/CAM within
100 ms

Users get notified if deviations occur, ensuring safety and early
error identification.

a) HAROS [5]: It is a framework for analysis and quality
improvement of robotic software developed using ROS but it
can be adapted to other applications in other environments
beyond the ROS ecosystem. It offers various plug-ins, out
of which property-based testing generates runtime monitors
based on formal properties that interest us.

As an example, we outline two properties that we can
monitor using HAROS plug-in within a co-simulation plat-
form, which are provided in Listing 1. The first property
requires the co-simulation to begin sending messages within
10 milliseconds, while the second specifies that a message
dispatched from orange vehicle must be received in red
vehicle within 100 ms.

b) STEM Tool [6]: It is a tool designed to address the
generation of monitors for CPS that require a combination of
space and time requirements. STEM generates source code
monitors from high-level specification language and employs
a non-linear satisfiability solver as the monitoring procedure
for LTLxMS formulas. This tool implements a monitoring
procedure for the combination of metric spaces and temporal
logic with applications in the ADS domain.

As we did before, we also present two sample properties
for monitoring with STEM in Listing 2. Informally, the first
property indicates that neither the red nor the orange
vehicles shall collide, while the second property adds a safety
margin of 1. unit to this constraint using the expand operator.

These properties will be utilized throughout the paper in
conjunction with our running example.

C. Microservices and Containers

Microservices involve building applications as small, inde-
pendent services that can be deployed and scaled separately.
Containers allow applications to run across different envi-
ronments. Together, they enable developers to break down
applications into smaller, more manageable components and
deploy them more efficiently. The benefits include improved
scalability, flexibility, and resilience. Microservices allow de-
velopers to iterate and release new features more quickly,
while containers enable efficient resource utilization and faster
deployment times. The following sections assume that the
reader is familiar with these concepts.

IV. APPROACH AND CONSIDERATIONS

The proposed approach involves utilizing
OpenSCENARIO [1], OpenDRIVE, and CARLA [8] tools to
define scenarios that defines the behavior of the Ego vehicle

Listing 2: An example of two properties in STEM’s specifi-
cation language

1 (property (always (not (overlap (prop "/vehicle/orange") (
prop "/vehicle/red")))))

2 (property (not (eventually (overlap (expand (prop "/vehicle
/orange") 1.) (expand (prop "/vehicle/red") 1.)))))

and the surrounding environment to be co-simulated [1]. Our
approach facilitates integration with other models, such as
topological network models that can feed simulators like
Artery V2X [12] or control systems that can be interconnected
with Matlab/Simulink simulation environments.

To illustrate, let us consider two models. One model con-
tains all the physical dynamics and surrounding environment
of a vehicle, while the other defines the physical communica-
tion layer. The co-simulation module manages communication
between the two simulators and may obtain co-simulation
results using the FMI 2.0 [3] interface, which is known as
a common and appropriate interface. Since FMI does not
support distributed simulations, we can integrate FMI with
ROS communication middleware.

To enable coupling of the simulation with the physical
devices, it is necessary to abstract each simulator into the
concept of model and solver [3]. This abstraction is the
basis for connecting the communication and control layers to
hardware devices in two ways: i) by using sub-systems in
a laboratory test bench, and ii) by integrating the hardware
in an cooperative intelligent transport ecosystem. The control
and interconnection layer function like a synchronous pipeline,
which receives a set of input data with a timestamp, processes
the data in a stateful manner, and outputs another set of
data in the same initial format, FMI 2.0. This abstraction
provides an interface that can be adapted to various contexts
and increases reliability due to the coupling of monitors at
Input/Output. These software monitors are generated using an
automated, error-free approach [6], [5], which reduces risks at
the interconnection of hardware subsystems.

A. Co-simulation-based Testing

To provide clarity for the remaining sections, let us provide
some preliminary definitions.

Definition 1. The Co-simulation-based testing consists of
generating unit tests or integration tests for the target system
using multi-domain models and environments of the system in
several distinct simulators.

B. Real-time Monitoring Pipeline

The monitoring pipeline (according to Definition 2) acts
as a healthy checker of the co-simulation-based testing. Val-
idation through monitoring is an important approach for co-
simulation-based testing.

Definition 2. The real-time monitoring pipeline involves inte-
grating software probes into the existing co-simulation process
to continuously monitor messages or frames that have real-
time and space constraints.

STRIVE

Vehicle
Code Commit Build Unit

Tests
Integration

Tests

Continuous Integration (CI)

Continuous
Deployment

Fig. 2: Co-simulation-based Testing with Continuous Integra-
tion Approach: STRIVE inside conventional CI/CD pipeline.

The monitor is automatically constructed and independent
of the ADS and has no direct impact on the system itself.
The system evolves around the simulation of one or more
pre-established scenarios and observations of the environment
are sent to the system and a trace to the monitor that is
capable of observing the space and time behaviors of the
intervening vehicles. In turn, the ADS produces actions (turn
left, accelerate, decelerate, among others) for the CARLA
autonomous driving simulator, which causes a change in
the simulation environment and produces new and endless
observations (closed loop).

The monitor, upon receiving observations from the simula-
tor, transforms them into a set of verdicts that indicate whether
the system requirement is satisfied or not. Unlike the ADS, the
monitor does not interfere with the simulation; only observes
and produces verdicts for validation of the system during, after
development, or during maintenance. We can observe in two
ways. We can receive the trace and give verdicts as the system
functions (online) or use it only to monitor a log or a ROS
bag (offline). In this paper, we utilize both approaches.

C. Continuous Integration

The current Software Development Cycle does work with
autonomous driving software but as the complexity increases
it needs co-simulation for testing instead as the known test
oracles and unit tests. Fig. 2 shows the reference CI pipeline
that we approach in this paper. It is known that automation
increases the quality of software and constant testing detects
problems in the first phases of development.

When using co-simulation platforms for validation of au-
tonomous vehicles, the question that may arises are ’How can
we assure that testing is well-formed ?’ or ’Are the messages
being sent to the other sub-systems?’.

If no one is observing the experiments, ’How can someone
observe the execution when co-simulation is automated ?’ or
even ’How can we trust the testing results?’. So our approach
tries to fulfill this requirement. No human has to observe the
testing. Therefore, we present our proposed architecture.

V. STRIVE REFERENCE ARCHITECTURE FOR
CO-SIMULATION-BASED TESTING

The STRIVE architecture is composed of four layers: Front
End, Back End, Micro-services Communication, and Persistent
Storage. Fig. 3 illustrates the logical architecture of STRIVE.
The Front End layer includes the Dashboard and provides the

capability to connect third-party applications, while the Back
End layer is comprised of various services and pods.

The CARLA pod is responsible for providing vehicle
dynamics, environment, and sensors. The virtual actuators
simulate the physics of the Ego vehicle, while the environment
models the world in which the vehicle operates, calculating
the state of objects within it. The sensors include a variety of
devices such as cameras, GNSS, LiDAR, radar, and IMU, all
of which can be simulated within the driving simulator. The
CARLA ROS Bridge serves as the interface between CARLA
and the STRIVE co-simulation subsystems, and CARLA is
not directly connected to any communication channel.

Another component of this architecture is Artery [12], which
simulates V2X communications. This involves simulating a
network from the packets to the physical layer using the
simulator or actual RSUs to perform package sending via
V2X protocols. Since Artery includes a proper ROS interface,
rosomnet [16], there is no need for a ROS bridge. Artery
communicates directly within the STRIVE namespace.

The STRIVE platform includes two monitor set containers:
one for vehicle behavior and one for network performance.
The vehicle behavior container evaluates whether the system
under test has controlled the vehicle in compliance with
defined rules, ground truth, or traffic laws. The network per-
formance container evaluates whether communication metrics
and rules are being met for communication to and from the
Ego vehicle.

Finally, the STRIVE reference architecture includes a stor-
age log component for managing and storing results from
metrics. This allows users to generate reports and analyses
on the data produced by the STRIVE platform.

A. Orchestration

The capabilities of the STRIVE platform include: enabling
connection with external V2X Devices’ clock; orchestrating
co-simulation; deciding which component feeds the clock;
providing automatic deployment; offering automatic monitor-
ing; and scaling while adding new or existing ROS nodes.
Regarding time synchronization, the STRIVE platform ensures
that time is adjusted along the simulation through its time
management component. This component coordinates the sim-
ulation time across all connected simulators and V2X devices.

The STRIVE platform includes the STRIVE Manager to
facilitate co-simulation, which allows the joint simulation of
multiple simulators that handle different domains or sub-
systems. This manager coordinates the simulation execution
across all connected simulators and V2X devices, enabling
the integration of different simulation tools.

B. Bundle with Testing Cases

The bundle in STRIVE is like a Git repository that includes
the necessary artifacts and code for testing and validation of
the ADS. This repository includes not only the code but also
the unit tests required for the continuous integration process.
The bundle is versioned using git, allowing for easy manage-
ment of changes and rollbacks. This approach ensures that the

Front End Back End (Kubernetes)
Microservices

Communication Persistent Storage

Dashboard
WebApp

ThirdParty
WebApp 1

ThirdParty
WebApp 2 A

PI
G

at
ew

ay
s

(S
er

vi
ce

s)

Manager CARLA

Artery FMI Bridge 1

Scenario
Runner ROS Broker

Monitor Set
V2X

Monitor Set
Traffic Rules

.

CARLA ROS Bridge

Pool of Pods

R
O

S
N

am
es

pa
ce

(D
D

S)

ST
R

IV
E

N
am

es
pa

ce
(D

D
S)

Log Report
Volume

Scenario
Files

Deployment
YAML Files

. . .

Scenario-Based
Testing Volume

Fig. 3: The micro-services-oriented reference logical architecture.

Fig. 4: Frame sequence of one CARLA run with two con-
nected vehicles and one Ego vehicle using running example.

testing and validation process is repeatable and transferable,
enabling the detection of potential faults and vulnerabilities
early in the development process.

VI. EXPERIMENTAL RESULTS

Since the initial deployment of our co-simulation monitors
on the STRIVE platform, we have identified that there are
delays in the messages exceeding 100 ms, with an upper bound
of 200 s. This deviation from the ETSI EN 302 637-2 may af-
fect the performance of the system during a run. Additionally,
we have encountered issues with the initialization phase of
the co-simulation platform, which is not functioning optimally.
This illustrates that without monitoring from the beginning of
development, we will be unable to make accurate detection
and observations, meaning that real-time monitoring matters.

This section presents the resource utilization of the STRIVE
software (see Fig. 5) during the validation of a scenario
illustrated in Fig. 1, which further evolves during a run Fig. 4.
The statistics were collected across all containers on following
machine: Intel Core i7-9750H processor running at 2.60GHz
with 12 threads, 16GB of DDR4 system memory (with a swap
space of 2.0GB), and a TU106M GeForce RTX 2060 GPU.

We performed a comprehensive analysis of memory and
CPU utilization across numerous containers in both ROS bag-
based (offline) and CARLA-based (online) deployments mea-
sured every 3 seconds over a period of 90 and 120 seconds re-
spectively. The average memory use for ROS bag deployment
was 277 MB, whereas the deployment of CARLA required

2500 MB, primarily because of the CARLA container. The
ROS bag and CARLA-based deployments showed a wide
range of CPU consumption, ranging from 0.46% to 7.5% or
13.51% in totality and 0.083% to 301.55% or 352.92% in total-
ity, respectively. These variations highlight the importance of
continuously analyzing and optimizing the system to guarantee
maximum scalability, informing resource allocation decisions,
and prevent expensive performance issues.

We analyzed the CPU utilization of ROS bag and CARLA-
based deployments to evaluate the cost-effectiveness of con-
tainerized applications in the cloud. ROS bag containers cost
0.5 USD per hour and CARLA containers cost 2 USD per hour
under a flat price scheme (fixed price per core-hour, e.g., 0.5
USD). In other words, approximately 40 and 30 tests can be
carried out per hour, costing 0.5 USD and 2 USD respectively
for ROS bag and CARLA-based deployments. Our approach
highlights the importance of taking cost into account when
developing and implementing containerized applications and
provides insights into cost-performance tradeoffs.

A. Orchestration/Management

Two possible configurations are available in the STRIVE:
A ROS bags (offline) and CARLA-based (online) set-up.
ROS bags created by the CARLA simulator, which are then
obtained through the CARLA ROS Bridge. Scenario ROS
bag runner, ROS Broker, Artery, and STRIVE manager are
all part of the ROS bag setup. Upon the request of STRIVE
manager, the scenario ROS bag runner initializes topics from
the ROS bag file, enabling ROS Broker to generate vehicle
threads for V2X CAM simulations. As long as Artery executes
simulations, the generation of CAM messages by ROS Broker
will continue until the ROS bag file ends. On the other
hand, CARLA-based deployment uses CARLA simulator,
Scenario runner, CARLA ROS Bridge, ROS Broker, Artery,
and STRIVE manager. The scenario runner waits for the artery
to be ready while the CARLA simulator runs the scenarios.
Artery receives feeds from ROS Broker, which starts the
scenario. Once scenario is finished, all services reach an end
under the control of STRIVE manager.

0 10 20 30 40 50

0

20

40

60

80

Time (s)

C
PU

U
sa

ge
(%

)
CPU Usage Over Time

Manager
ROS Broker
Bag Runner

Artery
V2X Monitor

(a) CPU – ROS bag.

0 10 20 30 40 50

40

60

80

100

120

Time (s)

M
em

or
y

U
sa

ge
(M

iB
)

Memory Usage Over Time

Manager
ROS Broker
Bag Runner

Artery
V2X Monitor

(b) Memory – ROS bag.

0 20 40 60 80

0

100

200

300

400

500

Time (s)

C
PU

U
sa

ge
(%

)

CPU Usage Over Time

CARLA
ROS Bridge

Manager
ROS Broker
Scen. Runner

Artery
V2X Monitor

(c) CPU – CARLA-based.

0 20 40 60 80

0

1,000

2,000

3,000

Time (s)

M
em

or
y

U
sa

ge
(M

iB
)

Memory Usage Over Time

CARLA
ROS Bridge

Manager
ROS Broker
Scen. Runner

Artery
V2X Monitor

(d) Memory – CARLA-based.

Fig. 5: CPU/Memory usage of test runs per container.

In a nutshell, ROS bag set-up is reasonably priced that help
with identifying and correcting issues. User-provided services
are possibility with a generic setup using STRIVE manager.

B. Co-Simulation-based Test Deployment

For deployment purposes, STRIVE employs a service-
based, containerized approach for launching its test sets. The
configurations for the services to be deployed are stored as
Kubernetes deployment files (automatically translated from
docker-compose file) and combined with test scenario files
to form a complete set of test batches. Each batch is an
independent unit that contains the necessary data for a single
test deployment. To maintain interoperability, the test scenario
files are also stored in persistent volumes that are accessible
to the relevant running services.

VII. CONCLUSION AND FUTURE WORK

STRIVE enables thorough testing of ADAS/AD systems
by integrating CARLA and Artery simulators, forming a co-
simulation for validation of AD behavior as well as V2X
communication. Runtime monitors allows continuous obser-
vation of V2X communication and detects anomalies, while
container-based deployment increases flexibility and scalabil-
ity while saving time in offline deployments. It is critical for
cost reduction to address inefficiencies and optimize resource
consumption. As shown in Figure 5, the system takes an addi-
tional 5 seconds to complete a test run after almost finishing
(approximately 10 seconds). This overhead must be minimized
to improve efficiency. V2X monitors are faster than traffic
rule monitors due to the intrinsic complexity of properties
that combine time and space. As future work, we intend to
reduce the overhead of data serialization between containers
and assist runtime monitors with hardware accelerators.

ACKNOWLEDGMENTS

This work is supported by the European Union/Next Gen-
eration EU, through Programa de Recuperação e Resiliência
(PRR) [Project Route 25 with Nr. C645463824-00000063].

REFERENCES

[1] Association for Standardisation of Automation and Measuring Systems,
“OpenSCENARIO,” retrieved 2023-03-23. [Online]. Available: https:
//www.asam.net/standards/detail/openscenario/

[2] A. Balakrishnan, J. Deshmukh, B. Hoxha, T. Yamaguchi, and
G. Fainekos, “Percemon: Online monitoring for perception systems,”
in RV, ser. Lecture Notes in Computer Science, vol. 12974. Springer,
2021, pp. 297–308.

[3] T. Blochwitz, M. Otter, J. Åkesson, M. Arnold, C. Clauß, H. Elmqvist,
M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel, H. Olsson,
and A. Viel, “Functional mockup interface 2.0: The standard for tool
independent exchange of simulation models,” in Proceedings of the 9th
International MODELICA Conference, September 3-5, 2012.

[4] M. R. Cantas and L. Guvenc, “Customized co-simulation environment
for autonomous driving algorithm development and evaluation,” in SAE
Technical Papers. SAE International, April 2021.

[5] R. Carvalho, A. Cunha, N. Macedo, and A. Santos, “Verification of
system-wide safety properties of ROS applications,” in IROS. IEEE,
2020, pp. 7249–7254.

[6] A. de Matos Pedro, T. Silva, T. F. Sequeira, J. Lourenço, J. C. Seco, and
C. Ferreira, “Monitoring of spatio-temporal properties with nonlinear
SAT solvers,” in FMICS, ser. Lecture Notes in Computer Science, vol.
13487. Springer, 2022, pp. 155–171.

[7] F. Hauer, T. Schmidt, B. Holzmüller, and A. Pretschner, “Did we test
all scenarios for automated and autonomous driving systems?” in ITSC.
IEEE, 2019, pp. 2950–2955.

[8] S. Malik, M. A. Khan, and H. El-Sayed, “CARLA: car learning to act
- an inside out,” in EUSPN/ICTH, ser. Procedia Computer Science, vol.
198. Elsevier, 2021, pp. 742–749.

[9] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development,
test and validation of automated vehicles,” in Intelligent Vehicles Sym-
posium. IEEE, 2018, pp. 1821–1827.

[10] U. Nations, “Vienna convention on road traffic,” 1968, retrieved
2022-04-11. [Online]. Available: https://unece.org/DAM/trans/conventn/
Conv road traffic EN.pdf

[11] D. Nickovic and T. Yamaguchi, “RTAMT: online robustness monitors
from STL,” in ATVA, ser. Lecture Notes in Computer Science, vol.
12302. Springer, 2020, pp. 564–571.

[12] R. Riebl, H. Gunther, C. Facchi, and L. C. Wolf, “Artery: Extending
veins for VANET applications,” in MT-ITS. IEEE, 2015, pp. 450–456.

[13] T. D. Son, A. Bhave, and H. V. der Auweraer, “Simulation-based testing
framework for autonomous driving development,” in ICM. IEEE, 2019,
pp. 576–583.

[14] M. Steimle, T. Menzel, and M. Maurer, “Toward a consistent taxonomy
for scenario-based development and test approaches for automated
vehicles: A proposal for a structuring framework, a basic vocabulary,
and its application,” IEEE Access, vol. 9, pp. 147 828–147 854, 2021.

[15] A. Temperekidis, N. Kekatos, and P. Katsaros, “Runtime verification
for fmi-based co-simulation,” in RV, ser. Lecture Notes in Computer
Science, vol. 13498. Springer, 2022, pp. 304–313.

[16] B. Vieira, R. Severino, E. V. Filho, A. Koubaa, and E. Tovar, “Copadrive
- A realistic simulation framework for cooperative autonomous driving
applications,” in ICCVE. IEEE, 2019, pp. 1–6.

[17] R. Xu, Y. Guo, X. Han, X. Xia, H. Xiang, and J. Ma, “Opencda:
An open cooperative driving automation framework integrated with co-
simulation,” in ITSC. IEEE, 2021, pp. 1155–1162.

[18] E. Zapridou, E. Bartocci, and P. Katsaros, “Runtime verification of
autonomous driving systems in CARLA,” in RV, ser. Lecture Notes in
Computer Science, vol. 12399. Springer, 2020, pp. 172–183.

https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://unece.org/DAM/trans/conventn/Conv_road_traffic_EN.pdf
https://unece.org/DAM/trans/conventn/Conv_road_traffic_EN.pdf

	Introduction
	Running Example
	Contributions of the paper
	Structure of the paper

	Related Work
	Preliminaries
	Co-Simulation
	Runtime Monitoring
	Microservices and Containers

	Approach and Considerations
	Co-simulation-based Testing
	Real-time Monitoring Pipeline
	Continuous Integration

	STRIVE Reference Architecture For Co-Simulation-based Testing
	Orchestration
	Bundle with Testing Cases

	Experimental Results
	Orchestration/Management
	Co-Simulation-based Test Deployment

	Conclusion and Future Work
	References

