LLHSC User Manual

Open an existing project

The default project is located inside the "examples" directory, which contains the following
files:

® gemu-aarch64-virt-minimal.dts
® gemu-aarch64-virt-minimal_nodes.xml
* deltat

To load this project, click on File -> Project -> Load and select the file "qgemu-aarch64-virt-
minimal_nodes.xml".

Two tabs will be opened: Data-flow Diagram and Feature Model.

LLHSC

To start the process it is necessary to load the core DTS file. This is accomplished by pressing
the play button in the node .dts source, as indicated in the figure below.

The next step is to edit the Feature Model and add the cross-tree constraints.

LLHSC x
File

Data-flow Diagram Feature Model

~ xml Configurator (Virtual Machine) &) v xmlSink @
xml

v dts Source ® E‘ v .dot Viev
>
dts@—0
4 .
k‘\', xmisplitter ® xml Viewer (HYPERVISOR) ®
2 configurations 2 - +
xml W1 — v dts Translate to xml ®
xml (pass-through) xml (model) o)
xml(VM 1) cmd (hypervisor) e FeaturelDE (.xml) -
xml(VM2) .cmd (hypervisor)
Graphviz (.dot) v .dot
L
v xmlsplitter ® xm o
2 configurations
v dot Viev

xml .’<’th
xml (pass-through)

xml
cmdVM1 o 1.—’ xml (VM 1)
-cm xml (VM 2)
E] .cmdVM 2 *—

cmd VM 2

~ xml Configurator (Virtual Machine) (&)
¥ dts Translate to xml ®

FeaturelDE (xml) -

Graphviz (.dot) -

xml

.xml (model)

.dot

Editing the Feature Model

In the Feature Model editor, it is possible to edit each node found inside the DeviceTree and
restrict the possible products generated by the model.

In this project, it is specified that /dts-v1/cpus is a "mandatory" feature, which indicates that
each virtual machine needs to have this feature selected.
The same node is also marked as "alternative", which means that only one of the two CPUs

can be selected inside one product.

Additionally, the cross-tree constraint cpus >> memory, specifies that if any of the CPUs is
selected, then the memory feature must also be selected.

The next step is to setup the number of virtual machines, and generate a product for each
virtual machine.

LLHSC

File

Data-flow Diagram Feature Model

chosen

memory

| psci | {(imer

P~Q O And
Oor

g | — (O Abstract

7 cpus = memory

Virtual machines (and Hypervisor) configuration

At this point is possible to generate products from virtual machines. In the current configuration,
there are two virtual machines. These are shown inside the .xml Configurator (Virtual
Machine) nodes, where each feature is represented by a checkbox.

The configuration of the hypervisor is shown inside the .xml viewer (HYPERVISOR) node,
which is performed the validation of the virtual machine products. In this view, the checkboxes
are not editable.

In the figure below, the /dts-v1/memory feature is de-selected and the feature cpu@O is
selected. Because the cross-tree constraint specified earlier is not satisfied, the configuration
of the hypervisor is invalid. This is shown by the red icon on the top-right side of the node.

LLHSC x
File

Data-flow Diagram Feature Model

~ xml Configurator (Virtual Machine) (@ ~ xmlSink @&
- dts Source @ Toul ~ .dotViev
> E ~ xml Viewer (HYPERVISOR) ®
dts 2 -t
xmlf - -
~ xmlsplitter ® [dtsvif =]
K& ® me)
2 configurations ploTI Chaty
xml intc v .dts Translate to.xml ®
xml (pass-through) ~ @ cpus .
xml (M) cpu@0 fdts-/ FeatureIDE (xml) -
xml (VM 2) U@ ’“L;:D"/
s ? Graphviz (dot) - dot
intc 1
M1 ~ @ cpus ~ xmlsplitter ® m o
xml (model) cpu@o :
«cmd (hypervisor) u@1 gchstiaticts
«cmd (hypervisor) s xml dot Viev
NTT— N timer e dis Translate to xml ®
~ xml Configurator (Virtual Machine) () apb-pclk
aliases FeaturelDE (xml) -
X chosen
o Graphviz (.dot) -
xml xml mel
.cmd VM1 -dot
@ [dsvi cmdVM1
memory .cmd VM 2
plom .emd VM 2
intc
~ @ cpus .dot
cpu@0
cpu@1 ~Variant Generator ®
psci
timer [=S e E OVM1 (VM2
M2
xml(modetl)
«cmd (hypervisor)
d2
d3
The figure below shows that if one of the virtual machines has the /dts-v1/memory feature
selected, then the hypervisor configuration turns into valid.
LLHSC x
File
Data-flowDiagram Feature Model
~ xml Configurator (Virtual Machine) ~ (®) ~ xmlSink &)
~ dis Source @ xml > dot Viey
> E ~ xml Viewer (HYPERVISOR) ®
As@——0 2 -t
i ~ @ [dts-vif
w xeni splitter =t
e @ S @ N
2 configurations ploT o =0
xml intc v .dts Translate to.xml ®
xml (pass-through) ~ @ cpus .
aml (VM) Pu@0 fdts-/ FeatureIDE (xml) -
AmLVM2) memery
pscl P Graphviz (.dot) A .dot
intc I
VM1 @ cpus ~ smisplitter @ > ot
xml (model) pu@0 .
.cmd (hypervisor) @1 Zleonfigliationy
.cmd thypervisor) bt sl p—
\ " xml (pass-through)
\ AN imer xml (VM 1) s Translate to xml ®
~ xmi Configurator (Virtual Machine) (®) apb-pclk xml(VM 2)
aliases FeaturelDE (.xml) v
] chosen
i Graphviz (dot) - -~
xml! xmil
.cmd VM1 .dot
@ /dsvil .cmdVM 1
memory .cmdVM2
ploT cmd VM2
intc
v & cpus .dot
cpu@0
cpu@1 +Variant Generator ®
psci
timer N ® e E OvM1 (M2
VM2

xml(model)
.cmd (hypervisor)
.cmd (hypervisor) I memory 0x40000000 0x20000000

d2
d3

In order to check which features were manually selected, it is possible to visualize the products
corresponding to each virtual machine configuration.

In this example, the second product is, in fact, automatically configured because of the
constraints imposed in the feature model. Since the /dts-v1/ cpus feature is both "mandatory”
and "alternative", once one cpu is selected for the first virtual machine, the cpu in the second
virtual machine is automatically selected, as determined by the constraint system.

LLHSC

File

Data-flow Diagram Feature Model

~ xmlSink @
xmt ~ dot View ®

v dts Translate to xml ®
FeaturelDE (xml) v
Graphviz (.dot) -
xml
smispliter @ xm -
2 configurations
al ~ .dot View
xml (pass-through) ®
~ dts Translate to xml ®
FeaturelDE (xml) v
Graphviz (.dot) -
xml
dot
o K] ow1 v
. dtsViewer (® v ¢ (Bao) tofile ®
I remory 0x40000000 0x20000000 e

examples/project-demo-3/teste
—@ Input .dts
Pass-through.dts @~ Choose Folder

Generating delta-oriented DeviceTree variants

The next step is to generate variants of the core DTS. For this purpose a delta-oriented
software product line is used. The set of deltas is specified inside the delta1 file. The deltas
d1, d2, d3 and d4 as listed below.

The delta d1 adds a new binding to the core DTS under the node "vEthernet", corresponding
to a virtual ethernet device using a 32-bit address space. The activation condition for this delta
is "cpu@1", which that this delta is applied whenever the feature /dts-v1/cpus/cpu@1 is
selected.

In order to be correctly applied, the binding "vEthernet" must be present in the DTS to which
the delta is applied. For this purpose, it is used the delta order specfied by the "when" clause.
In this case, d1 must be applied after d3.

delta dl after d3 when(cpu@l) {
adds binding vEthernet {
veth1l@80000000{
compatible="veth";
reg=<0x80000000 0x10000000>;
id=<1>;

i

Similarly to the previous delta, d2 adds a new device virtual device for ethernet network
whenever the feature /dts-v1/cpus/cpu@O is selected.

delta d2 after d3 when(cpu@d) {

adds binding vEthernet {
veth0@70000000{
compatible="veth";

reg=<0x70000000 0x10000000>;
1d=<0>;

i

The delta d3 is applied when the activation condition "(cpu@0 | cpu@1)" is true. In this case,
the address space is converted to 32-bit, by setting the "#address-cells" and "#size-cells" to 1.

delta d3 when(cpu@0|cpu@l) {
modifies / {
#address-cells=<1>;
#size-cells=<1>;
vEthernet{ };

Finally, the delta d4 specifies the valid address space inside the DTS.

delta d4 after d3 when(memory@40000000) {
modifies memory@40000000 {
reg=<0x40000000 0x20000000>;
}

Delta application is done by pressing the "blue" arrow at the top-left of the Delta Generator

window. Depending of the result provided by the checker, the icon in the top-right is either
"green", if no errors were found, or "red", otherwise.

LLHSC
File

Data-flow Diagram Feature Model

ol v dotView ®
.xml (pass-through)
> _dts Translate to .xml

1@0

FeaturelDE (xml) v
xmld

Graphviz (dot) ~

xml

.cmd VM1

memory

d
aliases chosen
.cmdVM2

.dot
~ Variant Generator ®
VM1 (VM2
D I?:>/ 9 ﬂ o ~ ¢ (Bao)tofile ®
¥ dts Viewer ® examples/project-demo-3/teste
View dts
N remory 0x40000000 0x20000000

Choose Folder
Input..dts
d2 Pass-through .dts Input .c (Bao)
d3
~ bao Code Generator
d4 ®
2 - +
v .dts Viewer
dts (HV)
VT < (Bao)
Inpu t dt '/—C.msvw
ough dts dtsVM 2
.dts
xml
-dts (HV)

-dts (VM 1)

-dts (VM 2) v .dts Viewer
View.dts
Input.dts
Pass-through .dts

In order to test the checker for errors, the following procedure can be taken. Edit the d4 delta by
double-clicking on the corresponding row. Then edit the text in the floating window, and
remove the base address of the memory bank. Then click on the "save" icon.

When pressing the "apply" button again, the result of the checker is an error, and the "red" icon
is show, as shown in the figure below.

4@0 ®
1@
® S-V!
FeaturelDE (xml)
Graphviz (.dot) o) D g
memory chosen
'/_ P
QL |
delta d4 after d3 when(memory@40000000) {

difi @40000000
® " o T,
o =2 ® o - ®

dl I t nnnnnnn y 0x40000000 0x20000000

Editable & cursor Visible
O NoWrapping () Character Wrapping () Word Wrapping ft .-/‘
’_\—‘ ®

Visualize DeviceTree variants

The last step in the process is to visualize the DTS variants. The windows called .dts Viewer
are used for this purpose. When clicking on the button inside, a floating window appears
showing the corresponding variant.

The figure bellow show the DTS of the hypervisor platform, where the virtual devices for
ethernet network communication are already present. The Bao configuration file is then
automatically generated from this DTS. The remaining DTSs are used by the hypervisor to
configure each of the two virtual machines.

File

Data-flow Diagram Feature Model

xml
xml pass-through)

@0 xmnl (VM 1) ~ dts Translate to xml

J@1 xml (VM 2)

FeaturelDE (xml)

xml
Graphviz (.dot)
cmd VM 1
xml
cmdVM 2

e

¥ Variant Generator

LLHSC

v .dot View

dot

.dts Viewer

Q

dts-v1f;
{

#size-cells = <1>;
#address-cells = <1>;
model = "Acme Ltd. Boogieboard develaper system";
compatible = "linux,dummy-virt";
memory@40000000 {
reg = <0x40000000 0x20000000>;
device_type ="memory";

cpus {
#size-cells = <0>;
#address-cells = <1>;
cpu@0
compatible = "arm,cortex-a53", "arm,armv8";
device_type = "cpu";

enable-method = "psci”;
M B @ K owiow: reg= <0x0>;
: ¥
v dts Viewer ® cpu@1{
on——— compatible = "arm,cortex-a53", "arm,armv8";
device_type = "cpu’;
a1 memory 0x40000000 0x20000000
¥ Input .dts enable-method = "psci;
d2 Pass-through Jits | reg= <0x1>;
= vbaocd .
d4 "\ |k
) 5 JEthernet {
, Veth0@70000000 {
v disViewer (@ p— compatible = "veth;
View.dts ‘ eg = <0x70000000 0x100000005;
Input .dts ./——. dts VM 1 .
“ ‘]
Pass-through dts dts VM 2 N DY
dts AV
— compatible = "veth";
r 0x80000000 0x10000000>;
s (HV) r 0x80000000 0x10000000
dts (VM 1) .

dts (VM 2)

®

v .dts Viewer

View .dts

Input..dts :
Pass-through .dts Editable

© NoWrapping

Cursor Visible
Character Wrapping

Word Wrapping

April, 10, 2023

